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Reduced screening, enhanced quantum fluctuations and 
confinement effects in one-dimensional electron systems 
(1DESs) cause a variety of exotic phenomena such as quan-

tum spin liquids1, Peierls transitions2, single electron transport3 and 
Tomonaga–Luttinger liquids (TLLs)4–21. Some important charac-
teristics of TLLs include power-law conductance and spin–charge 
separation, both of which depend sensitively on the ratio of elec-
tron–electron (el-el) interaction strength to electron kinetic energy. 
Spin–charge separation15,16,19–21 and el-el interaction strength12,22 
have been characterized in various 1DESs, but such measurements 
have led to inconsistent TLL parameters when measured within 
the same 1DES, suggesting that other physical mechanisms might 
be at play in the samples studied. Recently discovered mirror twin 
boundaries (MTBs) in single-layer (SL) 1H-MoX2 (X = S, Se, Te) 
provide a new system in which to explore such behaviour. These 
MTBs form a one-dimensional (1D) metallic channel within a 
two-dimensional semiconducting bulk that is ideal for investigat-
ing interacting electronic behaviour in 1DESs having atomic-scale 
feature size and varying length23. Signatures of an energy gap (rather 
than a power-law density of states12–14) and charge density modu-
lations have been experimentally demonstrated23–30 in MTBs, con-
sistent with theoretical predictions for a finite-length TLL31–36, but 
debate exists as to whether their origin might rather be due to a 
Peierls instability23–26,28. Some spectroscopic evidence of spin–charge 
separation in MTBs has been observed27, but clear identification of 

the spin/charge velocities and direct comparison of these properties 
to the MTB el-el interaction strength are still missing.

Here we report the observation of finite-length TLL behaviour 
for MTBs embedded in gate-tunable SL 1H-MoSe2 devices and char-
acterized by scanning tunnelling microscopy/spectroscopy (STM/
STS). While an earlier published measurement of MTB electronic 
structure involved non-gate-tunable samples of SL 1H-MoSe2 and 
was interpreted as evidence for charge density wave behaviour24, 
our gate-tunable MTB devices provide a remarkable experimental 
advancement over this and yield important insights that suggest a 
different type of MTB behaviour (that is, that MTBs exhibit a TLL 
ground state). The reason for this is that gating MTBs allows their 
carrier density to be tuned and enables unambiguous measurement 
of the MTB el-el interaction strength and carrier-density-dependent 
electronic structure. We observe strong variation in the MTB energy 
gap and charge density distribution as a function of applied gate 
voltage, consistent with expectations for a 1D particle in a box with 
interaction-induced level splitting. Clear evidence for TLL-based 
spin–charge separation in MTBs was obtained through measure-
ment of two distinct spectral function modulations that correspond 
to collective spin and charge excitations with different dispersions. 
The characteristic TLL parameter obtained from the observed 
spin and charge velocities was found to be in excellent agreement 
with the separately measured MTB el-el interaction energy and 
energy-level spacing. Observation of such good agreement between 
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these parameters within a single 1DES provides unusually strong 
support for identification of the ground state as a TLL.

SL 1H-MoSe2 was grown via molecular beam epitaxy (MBE) at 
the surface of epitaxial graphene supported by hexagonal boron 
nitride (hBN)/SiO2/Si (Fig. 1a and Supplementary Fig. 1). This het-
erostructure arrangement allows systematic control of electron fill-
ing at the MoSe2 surface by way of a doped Si bottom gate (Fig. 1b). 
The device was characterized by STM topographic imaging (Fig. 
1a), which shows large SL MoSe2 islands as well as a moiré superlat-
tice formed by alignment of the graphene and hBN37. Isolated MTBs 
and MTB networks are seen as double-straight-line features that 
exhibit a 4|4P structure (4|4P refers to grain boundary structures 
composed of four-fold rings with point sharing between the rings) 
as reported previously23,24 (Fig. 1c).

The electronic properties of an isolated 14-nm-long MTB 
(outlined in yellow in Fig. 1c) were characterized by measuring 
bias-dependent (V-dependent) STM differential conductance (dI/
dV), which reflects the surface electronic local density of states 
(LDOS). Figure 1d shows a typical dI/dV spectrum at zero gate 
voltage (Vg = 0) that is consistent with previous measurements24. 
Three dominant features in the dI/dV spectrum can be identified: 
an energy gap of Δ0 ≈ 128 meV bracketing the Fermi level (EF; the 
peak-to-peak width between v0 and c0), additional peaks further out 
in energy from the gap (black arrows labelled by v1, v2, c1, c2) and a 
large peak at V ≈ −240 meV (blue arrow).

The spatial distribution of MTB electronic states at different 
peak energies was characterized by performing constant-height dI/
dV mappings of the MTB in Fig. 1c. Figure 1e shows the electronic 
LDOS of both the highest occupied state (HOS) at V ≈ −93 meV (v0) 
and the lowest unoccupied state (LUS) at V ≈ 33 meV (c0), revealing 
periodic charge modulations along the MTB, as well as a two-lobe 
spatial feature perpendicular to the MTB as seen previously24,27,29. 
The HOS is observed to have 13 nodes, whereas the LUS has 14, 
as seen from direct comparison of the LDOS line profiles (Fig. 1f) 
acquired along the orange and green lines in Fig. 1e (nodes here are 

defined as local minima in the interior of the MTB). A dI/dV map 
of the v1 peak exhibits 12 nodes, while a map of the c1 peak exhibits 
15 nodes (Supplementary Fig. 2a–c), suggesting a particle-in-a-box 
nodal progression (that is, the number of nodes increases by 1 with 
each higher energy peak). The peaks vi and ci (i ≥ 0) can thus be 
interpreted as representing confined quantum levels. Similar nodal 
structure was observed in all the MTBs studied here (Supplementary 
Fig. 3 for additional representative data).

To gain insight into the nature of the energy gap at EF, we per-
formed STS measurement of the MTB shown in Fig. 1c for dif-
ferent gate voltages in the range −60 V ≤ Vg ≤ 60 V, thus enabling 
the MTB to be tuned from the hole-doped regime (Vg = −60 V) 
to the electron-doped regime (Vg = 60 V). Figure 2a shows the 
gate-dependent dI/dV curves acquired at the position marked in Fig. 
1e, while Fig. 2b shows a dI/dV intensity plot for a finer set of gate 
voltages at the same position. A key observation here is that the gap 
size changes with gate voltage. The dI/dV spectrum at Vg = −60 V 
(Fig. 2a, orange) shows a large gap at EF of Δlarge ≈ 121 meV that is 
similar to the gap Δ0, observed at Vg = 0 V (Fig. 2a, red). The dI/dV 
spectrum at Vg = 60 V (Fig. 2a, blue), however, shows a substantially 
smaller gap of Δsmall ≈ 70 meV. The peaks at the gap edge of Δsmall are 
also observed to have reduced intensities compared to those brack-
eting Δlarge. As Vg increases from −60 V, the overall band structure 
shifts rigidly towards lower energies, consistent with the electro-
static influence of the bottom gate. For Vg ≈ 10 V, a pronounced 
peak (blue arrow) appears at negative bias voltage and shifts to 
higher energies with increasing Vg, opposite to the overall lowering 
trend seen for the rest of the band structure. Such behaviour allows 
us to identify this peak as a tip-induced charging feature of the LUS 
(Supplementary Fig. 4 shows a representative real-space image 
of the charging-ring feature associated with this peak in another 
MTB)38. For Vg ≈ 20 V both the charging peak and the LUS begin 
to cross EF, resulting in a transition from the large energy gap to the 
smaller gap. For Vg > 20 V both the charging peak and the overall 
band structure continue to shift, as expected for increased electron 
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Fig. 1 | STM characterization of a SL MoSe2/graphene/hBN/SiO2/Si device at temperature T = 5 K. a, Large-scale STM topography of a SL MoSe2/
graphene/hBN/SiO2/Si device (set-point parameters: Vset = –2 V, Iset = 10 pA). Here, SLG refers to single-layer graphene, and BLG refers to bilayer graphene. 
b, Schematic of the experimental device set-up. Vb is the bias voltage applied between the sample and STM tip. c, A close-up STM derivative image 
of the MTBs in the area indicated by a red square in a (the derivative plot enhances the MTB image contrast). d, The dI/dV spectrum acquired on the 
MTB in the yellow rectangle in c at the position marked by a white cross (Vset = –0.3 V, Iset = 100 pA, Vmod = 2 mV. Vmod is the a.c. modulation voltage in dI/
dV spectroscopy measurements.). The energy gap is bracketed by the HOS (v0) and the LUS (c0). Other 1D quantum well states are labelled with black 
arrows while a charging peak is labelled with a blue arrow. e, Constant-height dI/dV maps of the MTB in c taken at the LUS (top) and the HOS (bottom; 
Iset = 100 pA, Vmod = 10 mV). The HOS map exhibits 13 nodes (n) while the LUS map exhibits 14 nodes. f, LDOS line profiles of the MTB at the energies of 
both the LUS and the HOS, acquired along the orange and green lines in e.
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filling of the MTB. We note that a second charging peak can be seen 
(starting at Vg = 15 V and V = −0.3 V in Fig. 2b) that is possibly due 
to another MTB nearby. The influence of multiple charging peaks 
was mitigated by picking MTBs well isolated from others. Similar 
gate-dependent behaviour was also observed for 19 other MTBs 
that were similarly measured using a variety of different STM tips 
(Supplementary Fig. 5 for representative data).

Constant-height dI/dV maps of the HOS and LUS of the MTB 
in Fig. 1c at Vg = ±60 V further reveal gate-dependent real-space 
electronic structure (Fig. 3). The HOS and LUS for the large gap 
configuration at Vg = −60 V (Δlarge) exhibit 13 nodes and 14 nodes, 
respectively (Fig. 3b), consistent with the real-space electronic 
structure observed for the undoped (Vg = 0 V) case (Fig. 1e,f). The 
HOS and LUS for the small gap configuration at Vg = 60 V (Δsmall), 
on the other hand, both exhibit 14 nodes (Fig. 3e). The LDOS 
maps of higher energy peaks are summarized in Supplementary 
Fig. 2d–i. (Similar gate-dependent nodal structure was observed 
for nine MTBs). This behaviour is in contrast to a Peierls instabil-
ity in which out-of-phase spatial patterns are expected at the HOS 
and LUS39.

In order to characterize the energy- and momentum-resolved 
MTB electronic structure, we measured dI/dV spectra along an 
MTB for the large gap case (Vg = 0 V; Fig. 4a) and performed Fourier 
transform (FT) analysis of the resulting density plot (here we chose 
a longer MTB than that in Figs. 1–3 to achieve better momentum 
resolution). Figure 4b shows the energy dependence of the STS 
intensity plot as a function of the MTB axial coordinate (x axis) and 
the sample bias (y axis). Fast real-space modulations (wavelength 
λ ≈ 1 nm) create a complex MTB nodal structure that coexists 
with a longer wavelength modulation that induces a dome-shaped 
charge density profile (similar real-space modulations in electronic  

structure have been previously reported both for MTBs19,21 and car-
bon nanotubes15,16).

Figure 4c shows the corresponding FT of the STS intensity plot, 
revealing both the energy dependence and momentum dependence 
of the electronic structure. Two linear dispersion branches with differ-
ent slopes are seen to cross EF at q/2π ≈ 1 nm−1 (which we identify as 
q = 2kF where kF is the Fermi wavevector) and are labelled by blue and 
red markers in Fig. 4c. These branches correspond to ‘fast’ real-space 
nodal structure and are dubbed the ‘fast branches’ hereafter. The 
velocity of the blue branch is 3.5 × 105 m s–1 (extracted from twice the 
slope of the dispersion since LDOS ∝ |ψ(x)|2, where ψ(x) is the elec-
tron wavefunction) and is consistent with the Fermi velocity, vF, of the 
MTB metallic band structure24,27. The velocity of the red branch, on 
the other hand, is 6.5 × 105 m s–1 and is higher than vF. An additional 
linear branch near the Γ point (labelled by orange markers in Fig. 4c) 
can be resolved that corresponds to the long wavelength modulation 
mentioned above (and is dubbed the ‘slow branch’ hereafter). The 
existence of multiple linear dispersion branches causes blurring of the 
real-space nodal structure at peak energies far from EF (Supplementary 
Fig. 3). A static mode (that is, constant wavevector with energy) at 
q = 2kF can also be observed, consistent with previous results24. Figure 
4d provides a second-derivative plot of the data presented in Fig. 4c, 
which allows the various dispersive features to be more clearly seen. 
This type of behaviour was observed in all seven of the MTBs that 
were characterized in this way (Supplementary Figs. 6 and 7 for addi-
tional representative data). All the measured MTBs were well isolated 
from other MTBs and defects to avoid spatial inhomogeneities in 
the local electrostatic environment that might obscure the intrinsic 
MTB behaviour. We also calibrated our STM tip on a material (Au) 
with a work function close to that of MoSe2 to minimize tip-induced 
band bending effects (tip-induced band bending can lead to ‘curving’  

–0.3 –0.2 –0.1 0 0.1 0.2 0.3
–60

–40

–20

0

20

40

60

dI/dV

Sample bias (V)

B
ot

to
m

 g
at

e 
V

g 
(V

)

dI/dV
 (a.u.)

Low

High

–0.2 –0.1 0 0.1 0.2
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

50 V

40 V

30 V

–10 V

20 V

10 V

0 V

–20 V

–30 V

–40 V

–50 V

Vg = 60 V

dI
/d

V
 (

a.
u.

)

Sample bias (V)

Vg = –60 V

a b

SL 1H-MoSe2
SL 1H-MoSe2 

MTB

n doping

p doping

 
MTB

Fig. 2 | Gate-dependent electronic structure of the MTB. a, A waterfall plot showing dI/dV spectra acquired over the gate voltage range –60 V ≤ Vg ≤ 60 V 
on the MTB from Fig. 1c (Vset = –0.3 V, Iset = 100 pA, Vmod = 2 mV; position marked in Fig. 1c). The spectra exhibit a large energy gap for Vg < 20 V and a small 
gap for Vg > 20 V. Electronic structure shifts to lower energy with increasing Vg (that is, with increased electron doping). The charging peaks are shown by 
the arrows. b, A density plot of dI/dV spectra acquired for –60 V ≤ Vg ≤ 60 V on the MTB showing the overall band structure shift and energy gap transition 
as a function of Vg (Vset = –0.3 V, Iset = 100 pA, Vmod = 5 mV; the slight reduction of intensity seen for Vg ≥ –8 V arises from the fact that under this condition, a 
charging peak increases the tunnel current at the dI/dV set-point voltage and thereby causes a small retraction of the tip).

Nature Materials | VOL 21 | July 2022 | 748–753 | www.nature.com/naturematerials750

http://www.nature.com/naturematerials


ArticlesNaTure MaTeriaLS

of the chemical potential with tip position due to local tip gating 
(Supplementary Figs. 6a and 8)).

Our experimental results are in excellent agreement with the 
theoretical predictions for a confined TLL. Our observation of 
gate-induced modulation of the energy gap size reveals that el-el 
Coulomb repulsion is a dominant factor in MTB electronic struc-
ture, a major characteristic of TLLs (the gate dependence of the 
gap size cannot be explained by screening effects or electron–pho-
non coupling; Supplementary Note 1 and Supplementary Fig. 9). 
Were el-el interactions absent, the Fermi level energy gap would 
be gate independent and would equal the 1D single-particle level 
spacing value of E0 = ħvFπ/L (ℏ is the reduced Planck’s constant; L 
is the length of the MTB). The presence of el-el Coulomb repulsion 
explains the large and small gap variation seen for different electron 
fillings since each MTB quantum confinement level has spin degen-
eracy and can accept two electrons. When only one of the spin states 
is filled by tuning the gate voltage, then el-el repulsion will create 
a charging gap Δsmall = EC (EC, charging energy) that is required to 
inject a second electron with opposite spin into the same MTB level, 
resulting in level splitting for electron addition versus removal and 
an overall magnetic ground state (Fig. 3f, green).

This charging behaviour explains the identical real-space nodal 
structure experimentally observed for the HOS and LUS in Fig. 3e, 
as well as the reduced spectral weight of the HOS and LUS states 
in Fig. 2 at Vg = 60 V (where the HOS and LUS both contain just a 
single spin state) compared to Vg = −60 V (where the HOS and LUS 
are both spin degenerate). When the MTB HOS level contains two 
electrons (for example, at Vg = −60 V) then repulsion between the 
HOS and LUS electrons adds EC to the single-particle level spacing, 
E0, resulting in a larger gap Δlarge = E0 + EC (Fig. 3c). In this case we 
expect a different number of nodes for the HOS and LUS since they 

are associated with different quantum confinement levels, as seen 
experimentally in Fig. 3b. This scenario is also supported by the fact 
that the single-particle level spacing defined by the energy differ-
ence between v1 and the HOS (for example, E0 = 52 meV (Fig. 1d)) 
matches the difference Δlarge – Δsmall = 51 meV (Fig. 2a), which comes 
from a different set of levels. Further evidence for this interpretation 
comes from the reentrant large–small–large gate-dependent gap 
size transition seen for some MTBs (Supplementary Fig. 5), which 
signals repeated filling/splitting of the confined energy levels.

Our observation of gate-induced modulation of the MTB energy 
gap allows a direct and precise measurement of EC/E0, the ratio of 
MTB el-el interaction energy to electron kinetic energy. Since the 
single-particle level spacing can be expressed as E0 = ħvFπ/L and 
the charging energy EC is inversely proportional to the separation 
of two electrons, x1 – x2 ≈ L, we expect both Δlarge and Δsmall to scale 
as L−1. This is confirmed by measurements of the gap size statistics 
for MTBs of different lengths ranging from 6 nm to 30 nm (Fig. 5a; 
this provides further evidence against a Peierls instability-induced 
gap, which should be length independent). The ratio of EC/E0 is 
thus experimentally observed to be universal for MTBs of differ-
ent lengths. This ratio is related to TLL behaviour through the TLL 
parameter Kc as12,34

Kc =
(

1+ 2EC
E0

)

−

1
2 (1)

(Supplementary Note 2.1). The energy gaps measured in our spec-
troscopy of MTBs of different lengths yield a universal value of 
Kc = 0.54 ± 0.03 (Fig. 5b).

Another piece of evidence supporting the TLL interpretation of 
MTBs is the observation of spin–charge separation. The existence of 
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two linear fast branches in the FT-STS suggests that a single metal-
lic band picture24,27 for MTBs is insufficient, whereas TLL-based 
spin–charge separation can explain this behaviour quantitatively. 

To see this we simulated the expected STM tunnelling LDOS by 
calculating the electron spectral function for a finite 1D TLL27,35 
having Kc = 0.54 (Fig. 4e–g) and with all other material-dependent  
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parameters constrained by experimental values (Supplementary 
Note 2.2). Both the fast and slow modulations can be seen in the 
resulting theoretical energy-dependent LDOS (Fig. 4e), which 
closely resembles the experimental features seen in Fig. 4b. Clear 
spin–charge separation can be observed in the FT of the simulated 
LDOS, as seen in Fig. 4f, where two linear branches show LDOS 
modulations induced by spin (blue arrow) and charge (red arrow) 
density excitations that have distinct velocities27,31,35,36 (the slow 
branch and static 2kF branch can also both be seen). Direct com-
parison between Fig. 4c and Fig. 4f allows us to identify the blue and 
red branches in the experimental data of Fig. 4c as the TLL spin and 
charge branches, respectively (this can be seen even better by com-
paring the second-derivative dispersions in Fig. 4d,g). The clear sig-
nature of spin–charge separation seen in the FT-STS measurement 
allows us to experimentally extract the TLL parameter through a 
second, independent method via the following relation8,9,15,16,32,33,40:

Kc =
vs
vc , (2)

where vs and vc are the slopes (that is, velocities) of the spin and 
charge branches, respectively (Supplementary Note 2.1). This tech-
nique yields a value of Kc = 0.53 ± 0.05 (Fig. 5c), in excellent agree-
ment with the value of Kc = 0.54 ± 0.03 determined from the energy 
gap ratio EC/E0 (Fig. 5b). The TLL picture is thus confirmed through 
self-consistent measurements of both energy-level alignment (Fig. 2)  
and spatial LDOS modulations (Fig. 4). We also note that the static 
modulation, previously interpreted as a Peierls instability23–26,28, can 
also be explained by a pure TLL model (Fig. 4f) without invoking 
the Peierls physics31,35,36.

In conclusion, our observation of gate-dependent energy gaps 
via STS allows precise measurement of the el-el Coulomb interac-
tion energy in 1D MTBs. The Luttinger parameter values deter-
mined separately from the el-el interaction energy and spin and 
charge velocities are in excellent agreement with each other. Our 
device thus provides an ideal platform to study the response of 1D 
TLL systems to magnetic scatterers41,42, external magnetic field43 and 
tuned dielectric environments29. Since the width of MTBs in transi-
tion metal dichalcogenides is only ~1 nm, such studies are a critical 
step towards understanding the behaviour of conducting wires at 
the ultimate level of miniaturization.
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Methods
Sample fabrication. The preparation of the epitaxial graphene/hBN 
heterostructure supported on a SiO2/Si substrate is described in ref. 37. Single-layer 
1H-MoSe2 films with MTBs were grown directly on epitaxial graphene/hBN 
heterostructures using MBE. Mo and Se were evaporated from an electron-beam 
evaporator and a home-built Knudsen cell, respectively. The flux ratio between 
Mo and Se was ~1:100 and the sample was kept at 450 °C during the growth. After 
growth the sample was heated to ~600 °C and annealed under Se for 30 min. The 
sample was capped with ~20 nm of amorphous Se before being taken out of the 
ultra-high-vacuum growth chamber. Electrical contacts were made by depositing 
Cr and Au (3 nm and 30 nm) through a shadow mask.

STM/STS measurements. STM/STS measurements were performed in a 
low-temperature ultra-high-vacuum STM system (CreaTec) at T = 5 K. Prior to 
measurement, the samples were annealed in ultra-high vacuum at ~200 °C for 
1 hour to remove the Se capping layers and then immediately transferred in situ to 
the STM stage at T = 5 K. Electrochemically etched tungsten tips were calibrated on 
a Au(111) surface before other measurements. The dI/dV spectra were collected 
using standard lock-in techniques (frequency f = 401 Hz). The dI/dV mapping was 
performed in constant-height mode (that is, with the feedback loop open).

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request. Source data are provided  
with this paper.
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